ספרים ומאמרים

  • Abnormal basic visual processing functions in binocular fusion disorders

    Abnormal basic visual processing functions in binocular fusion disorders

    מחבר Laura Benhaim-Sitbon, Maria Lev, and Uri Polat

    תקציר

    Heterophoria is a common type of binocular fusion disorder that consists of a latent eye misalignment with potential consequences on daily activities such as reading or working on a computer (with CVS). Crowding, a type of contextual modulation, can also impair reading. Our recent studies found an abnormal pattern of low-level visual processing with larger perceptive fields (PF) in heterophoria. The PF is the fundamental processing unit of human vision and both masking and crowding depend on its size. We investigated how heterophoria would impact the PF’s size via a lateral masking experiment and consequently affect the foveal crowding at different letter-spacings (the crowding zone). More specifically, we explored the relationship between crowding, lateral masking, the PF’s size, and the amount of heterophoria. The binocular horizontal PF’s size was larger with heterophoric subjects, in agreement with our previous study. We found a stronger crowding and an extended crowding zone associated with slower response times; this shows that the processing of letter identification under both crowded and uncrowded conditions requires more processing effort in heterophoric individuals. In agreement with previous studies, we found a correlation between the crowding zone and the PF’s size; each was strongly correlated with the amount of phoria. These findings resemble those involving the PF size and the extended crowding found at the fovea in amblyopia and young children. We suggest that these findings could help explain the inter-observers’ variability found in the masking literature, and the reading difficulties often encountered in subjects with high heterophoria.

    Read more

  • Optimizing the fabrication of a 3D high-resolution implant for neural stimulation

    Optimizing the fabrication of a 3D high-resolution implant for neural stimulation

    מחבר Gal Shpun, Nairouz Farah, Yoav Chemla, Amos Markus, Tamar Azrad Leibovitch, Erel Lasnoy, Doron Gerbe

    תקציר

    Background: Tissue-integrated micro-electronic devices for neural stimulation hold great potential in restoring the functionality of degenerated organs, specifically, retinal prostheses, which are aimed at vision restoration. The fabrication process of 3D polymer-metal devices with high resolution and a high aspect-ratio (AR) is very complex and faces many challenges that impair its functionality.

    Approach: Here we describe the optimization of the fabrication process of a bio-functionalized 3D high-resolution 1mm circular subretinal implant composed of SU-8 polymer integrated with dense gold microelectrodes (23μm pitch) passivated with 3D micro-well-like structures (20μm diameter, 3μm resolution). The main challenges were overcome by step-by-step planning and optimization while utilizing a two-step bi-layer lift-off process; bio-functionalization was carried out by N2 plasma treatment and the addition of a bio-adhesion molecule.

    Main results: In-vitro and in-vivo investigations, including SEM and FIB cross section examinations, revealed a good structural design, as well as a good long-term integration of the device in the rat sub-retinal space and cell migration into the wells. Moreover, the feasibility of subretinal neural stimulation using the fabricated device was demonstrated in-vitro by electrical activation of rat's retina.

    Conclusions: The reported process and optimization steps described here in detail can aid in designing and fabricating retinal prosthetic devices or similar neural implants.

    Read more

  • Traces of early developmental bias in the adult brain

    Traces of early developmental bias in the adult brain

    מחבר Gad Serero, Maria Lev, Dov Sagi & Uri Polat

    תקציר

    During the first 2 years of life, there is a high prevalence of optical distortions in the human eye, causing vertical blur on the retina (astigmatism), which is naturally resolved by the age of 5; thus, it is not treated. Here we determined the possible long-term effects on visual grouping resulting from optical distortions during the development of visual perception. Our results show a clear directional bias in shape perception for optically corrected astigmatic adults, compared with non-astigmatic ones, with remarkably slow decision times. These effects can be explained by a mismatch between the developmental timescales of different components in the visual system.

    Read more

  • Meridional binocular rivalry reveals a trace of uncorrected oblique input during development in the adult brain

    מחבר Gad Serero, Maria Lev, Uri Polat

    תקציר

    Binocular rivalry (BR) is a visual perception phenomenon that occurs when each eye perceives different images and stimuli, causing alternating monocular dominance. To measure BR, many studies have used two monocular conflicting images to induce monocular alternations. Here we chose a group of participants with oblique astigmatism (OA) and who produced blur on the orthogonal oblique meridian in each eye, resulting in two conflicting images, which may enhance the stimulation of monocular alternations. Our results show that OA participants tend to have a high rate of BR when viewing natural images, whereas the control group does not have BR for the same images. We suggest that this low ability to fuse could indicate the presence of a trace due to uncorrected vision during the critical period, which could be retained in the adult brain.

    Read more

  • Perceptual learning based on a temporal stimulus enhances visual function in adult amblyopic subjects

    Perceptual learning based on a temporal stimulus enhances visual function in adult amblyopic subjects

    מחבר Auria Eisen-Enosh, Nairouz Farah, Uri Polat & Yossi Mandel

    תקציר

    Studies have shown that Perceptual Learning (PL) can lead to enhancement of spatial visual functions in amblyopic subjects. Here we aimed to determine whether a simple flickering stimulus can be utilized in PL to enhance temporal function performance and whether enhancement will transfer to spatial functions in amblyopic subjects. Six adult amblyopic and six normally sighted subjects underwent an evaluation of their performance of baseline psychophysics spatial functions (Visual acuity (VA), contrast sensitivity (CS), temporal functions (critical fusion frequency (CFF) test), as well as a static and flickering stereopsis test, and an electrophysiological evaluation (VEP). The subjects then underwent 5 training sessions (on average, a total of 150 min over 2.5 weeks), which included a task similar to the CFF test using the method of constant stimuli. After completing the training sessions, subjects repeated the initial performance evaluation tasks. All amblyopic subjects showed improved temporal visual performance (CFF) in the amblyopic eye (on average, 17%, p << 0.01) following temporal PL. Generalization to spatial, spatio-temporal, and binocular tasks was also found: VA increased by 0.12 logMAR (p = 0.004), CS in backward masking significantly increased (by up to 19%, p = 0.003), and flickering stereopsis increased by 85 arcsec (p = 0.048). These results were further electrophysiologically manifested by an increase in VEP amplitude (by 43%, p = 0.03), increased Signal-to-Noise ratio (SNR) (by 39%, p = 0.024) to levels not different from normally sighted subjects, along with an improvement in inter-ocular delay (by 5.8 ms, p = 0.003). In contrast, no significant effect of training was found in the normally sighted group. These results highlight the potential of PL based on a temporal stimulus to improve the temporal and spatial visual performance in amblyopes. Future work is needed to optimize this method for clinical applications.

    Read more

  • Extended perceptive field revealed in humans with binocular fusion disorders

    Extended perceptive field revealed in humans with binocular fusion disorders

    מחבר Laura Benhaim-Sitbon, Maria Lev & Uri Polat

    תקציר

    Binocular vision disorders or dysfunctions have considerable impact on daily visual activities such as reading. Heterophoria (phoria) is a latent eye misalignment (with a prevalence of up to 35%) that appears in conditions that disrupt binocular vision and it may affect the quality of binocular fusion. Our recent study, which used lateral masking (LM), suggests that subjects with binocular fusion disorders (horizontal phoria) exhibit an asymmetry and an abnormal pattern of both binocular and monocular lateral interactions, but only for the horizontal meridian (HM). The perceptive field (PF) is the fundamental processing unit of human vision and both masking and crowding depend on its size. An increased PF size is found in amblyopic populations or in young children. We hypothesized that the PF’s size would be asymmetric only for the phoric group (larger along the HM). We estimated the PF’s size using two different methods (LM with equal-phase and opposite-phase flankers). Phoric subjects exhibited a larger binocular PF size, only for the HM, confirming our hypothesis of an asymmetric PF size. However, the monocular PF size of phoric and control subjects was similar. Phoria affects the PF’s size similarly to meridional amblyopia but without being attributed to abnormal refraction. We suggest that these findings could help explain the inter-observer variability found in the masking literature and the reading difficulties often encountered in subjects with high heterophoria. Since perceptual learning can reduce the PF’s size, further investigation of training may provide a novel therapy to reduce some symptoms related to heterophoria.

    Read more

  • Fixation-related visual mismatch negativity

    Fixation-related visual mismatch negativity

    מחבר Oren Kadosh, and Yoram S. Bonneh

    תקציר

    Vision under natural conditions could be studied by combining electroencephalogram (EEG) and eye tracking as well as using saccades as triggers for the onset of the fixation-related potentials (FRPs) and for the oculomotor inhibition (OMI) that follows every saccade. The result of this analysis is thought to be equivalent to the event-related response following a peripheral preview. Previous studies that measured responses to visual deviants in a sequence of flashed stimuli found an increased negativity in the occipital N1 component (visual mismatch negativity [vMMN]), and prolonged saccadic inhibition for unexpected events. The aim of the current study was to develop an oddball paradigm in constrained natural-viewing and determine whether a similar mismatched FRP and prolonged OMI for deviance could be found. To this end, we developed a visual oddball paradigm on a static display to generate expectancy and surprise across successive saccades. Observers (n = 26) inspected, one after the other, seven small patterns of E and an inverted E arranged on the screen along a horizontal path, with one frequent (standard) and one rare (deviant), looking for a superimposed tiny dot target in each 5-second trial. Our results show a significantly larger FRP-N1 negativity for the deviant, compared with the standard and prolonged OMI of the following saccade, as previously found for transient oddballs. Our results show, for the first time, prolonged OMI and stronger fixation-related N1 to a task-irrelevant visual mismatch (vMMN) in natural, but task-guided viewing. These two signals combined could serve as markers of prediction error in free viewing.

    Read more

  • Temporal synchronization elicits enhancement of binocular vision functions

    Temporal synchronization elicits enhancement of binocular vision functions

    מחבר Auria Eisen-Enosh, Nairouz Farah, Uri Polat , Yossi Mandel

    תקציר

    Integration of information over the CNS is an important neural process that affects our ability to perceive and react to the environment. The visual system is required to continuously integrate information arriving from two different sources (the eyes) to create a coherent percept with high spatiotemporal precision. Although this neural integration of information is assumed to be critical for visual performance, it can be impaired under some pathological or developmental conditions. Here we took advantage of a unique developmental condition, amblyopia ("lazy eye"), which is characterized by an impaired temporal synchronization between the two eyes, to meticulously study the effect of synchronization on the integration of binocular visual information. We measured the eyes' asynchrony and compensated for it (with millisecond temporal resolution) by providing time-shifted stimuli to the eyes. We found that the re-synchronization of the ocular input elicited a significant improvement in visual functions, and binocular functions, such as binocular summation and stereopsis, were regained. This phenomenon was also evident in neurophysiological measures. Our results can shed light on other neural processing aspects and might also have translational relevance for the field of training, rehabilitation, and perceptual learning.

    Read more